Accident Analysis for the New Millennium

Jeffrey Bozanic

Accident Analysis (1977)

Sheck Exley

- Guideline
- Air Rule
- Depth

Accident Analysis (1984)

Wes Skiles

- Guideline
- Air Rule
- Depth
- Training
- Lights

Cave Dive Training Level

15.12% of fatalities have overhead training

n = 96

© 2008 Jeffrey Bozanic

Fatalities and Training

n = 635

Trained Overhead Divers as Percentage of All Fatalities

n = 635

Why??

- Training is now more available
- Access control at popular locations
- Effectiveness of past educational campaigns
- New contributory causes

Accident Analysis (2008)

- Guideline
- Air Rule
- Depth
- Training
- Lights

• Inappropriate gas mixtures

- A diver exploring a cave system was using stage bottles to extend penetration distances.
- At the start of the dive, he dropped his decompression bottle near the entrance for later use.
- During the exit phase of the dive, he picked up and switched to his stage bottle.

- Fighting the inflowing current, he was observed to convulse, and drowned.
- It was later determined that he had left the wrong bottle at his decompression stop, and was breathing his high oxygen mix (EAN50) at depth (140 ffw).

Improper Gas Mixes

- Wrong gas at depth
- Mislabeled cylinders
 - Increased task loading
 - Improper mixing procedures
 - Poorly analyzed or unanalyzed mixes
- Cave divers progressing to stage bottles too rapidly

JEB1

p Jeffrey Bozanic; 23/05/2008

Accident Analysis (2008)

- Guideline
- Air Rule
- Depth
- Training
- Lights

- Inappropriate gas mixtures
- New technology

- A cave diving team is using trimix and scooters to explore the far reaches of a cave system.
- The divers are working to depths of over 250 ffw.
- During the exit phase of the dive, one diver apparently fouls the line in the DPV, silting the cave.
- Both divers die before being able to solve the problems.

New Technology

- Nitrox & Trimix
- Diver propulsion vehicles (DPVs)
 - Rebreathers
 - Combinations of above
 - Increased task loading
- Cave divers progressing to new technology too rapidly
- Cave divers over-extending themselves on new technology

JEB2

p Jeffrey Bozanic; 23/05/2008

Accident Analysis (2008)

- Guideline
- Air Rule
- Depth
- Training
- Lights

- Inappropriate gas mixtures
- New technology
- Medical problems
- Equipment maintenance

- A 51 year old full cave certified diver is exploring a cave with a cave certified buddy.
- The depth is about 30 ffw.
- During the dive the regulator second stage parts from the regulator hose.
- In the process of changing regulators, the diver drifts up a few feet and embolizes.
- The buddy is unable to tow the victim to safety in time to preserve life.

- The few feet that the victim drifted up should not have been sufficient to cause an embolism in a healthy individual
- During autopsy, it was found that the victim had undiagnosed lung cancer
- It is likely that the cancer mass had blocked a portion of the airway, causing the embolism

Medical Problems

- Aging cave diver population
 - "Old timers" still active
 - Many new cave divers are older
- Undiagnosed medical issues
- Chronic health problems
 - -Blood pressure
 - Arteriosclerosis
 - -Others
- Poor physical condition
 - Heart attacks

JEB3

p Jeffrey Bozanic; 23/05/2008

Age of Decedents 1950-1999

n=427

Age of Decedents 1950-2008

Mean Age of Decedents

Equipment Maintenance

- Complacency
- Poor regulator servicing
- Exposure suit issues
- Rebreather issues
 - Failure to change sensors
 - Over-using absorbent
- Configuration issues
 - Roll off on isolation manifolds
 - Too much redundant equipment

Slide 25

JEB4

p Jeffrey Bozanic; 23/05/2008

Accident Analysis (2008)

- Guideline
- Air Rule
- Depth
- Training
- Lights

- Inappropriate gas mixtures
- New technology
- Medical problems
- Equipment maintenance
- Solo diving

- Two cave divers conducted an exploration dive in a long lava tube cave.
- During the exit they stop to explore a side passage.
- Upon returning to the main line, the lead diver, a very experienced (>1,000 cave dives) individual, begins to swim in the wrong direction
- During the ensuing discussion, the divers decide to swim in the other direction
- Both divers exit safely

Solo Diving

- Has been associated with at least 72 fatalities
- 51% of the trained cave divers who died in caves were on solo dives
- Just because you are diving with someone does not mean you have a "buddy"

Solo Diving

- Much exploratory cave diving done solo
- Lack of qualified dive partners
 - Reduces some environmental risks
- Lacking the most important piece of redundancy: the human brain!

Accident Analysis (2008)

- Guideline
- Air Rule
- Depth
- Training
- Lights

- Inappropriate gas mixtures
- New technology
- Medical problems
- Equipment maintenance
- Solo diving
- Skill maintenance

- A pair of divers are cave diving in a system along permanent lines.
- Both are full cave certified (3 years), but have not recently been cave diving.
- As part of the dive plan, they cross to a secondary line (leaving a gap reel).
- During the exit they miss the jump, swimming 1400 feet in the wrong direction.
- Recovery divers find the bodies about 250 feet from the entrance.

Skill Maintenance

- In the past, "Cave divers were cave divers!"
- Many people now only cave dive on vacations
- People return to dives they were once capable of, but arguably now are beyond their skill level

Related Projects

- Divers Alert Network (DAN)
- Incident Reporting & Investigative System (IRIS)
- Deeplife
- Incident Reporting & Analysis Project (IRAP) http://www.cavediver.net/irap/irap_frm.htm

Incidence Rates

After Denoble & Bozanie

Population	Denominator	Time Period	/100K Divers	/100K Dives
CDG, GB	Recorded	1957-1979		138 (65-300)
CDG, GB	Recorded	1980-2006		24.6 (12-50)
Orkney, Scotland	Recorded	1999-2000		4 (1-11)
Australia	Estimated	1989	34	1.7-3.4
BC, Canada	Tank Count	1999-2000		2.04 (0.8-6)
Japan	Tank Count (est)			1-2.4
U.S.	Estimated	1960-1994	160-1400	
U.S.	Estimated	1989	16.7	0.8-1.6

Challenges—Data Collection

- Do not receive data
- Years to get data (2006)
- Incomplete
- Contradictory information
 - Newspapers
 - Internet sources
 - Personal accounts
- Need official sources documents
 - Autopsy reports
 - Law enforcement incident reports

Challenges—Foreign Data

- Do not receive data
- Years to get data (2006)
- Incomplete
- Contradictory information
- Need official sources documents

Translations

Challenges—Data Entry

- Time
 - Research
 - Data entry
 - Averages one working day per incident to research & enter
- Data integrity
- Coding

Challenges—Reports (Individual)

Legal Climate

- "Please send me a copy of the accident report as soon as possible... if you need one, I can get you a release from the deceased..."
- Community too small to maintain confidentiality

Challenges—Reports (Summary)

- Time to amass and compile data
- Data integrity
- Time to analyze and prepare report
- Takes several years to add sufficient data to make new report worthwhile
- Re-coding for new trends

Challenges—Reports (Individual Requests)

- Legal climate
- Time to research data
- Incomplete information to track particular case
- Re-coding for requested information

How Can You Help?

Individuals

- Report any information on fatalities (esp foreign)
- Participate in IRAP
- Provide diving history (log book data)
- Provide annual information on diving
 - # dives (O/W & cave)
 - trimix (O/W & cave)
 - rebreather (O/W & cave)

Recovery Divers

- Accident reports to IUCRR within days
- Provide other source data

How Can You Help?

Site Managers

- Accident reporting
- Annual activity level reporting
- Historical data on activity levels

Agencies

- Certification numbers to DAN
- Add activity data fields to member renewal applications and report
- Award information to DAN (Abe Davis, etc)

Accident Analysis (2008)

- Guideline
- Air Rule
- Depth
- Training
- Lights

- Inappropriate gas mixtures
- New technology
- Medical problems
- Equipment maintenance
- Solo diving
- Skill maintenance

Acknowledgements

- NACD
- NSS-CDS
- IUCRR
- Univ of Rhode Island
- DAN

- Henry Nicholson
- Debbie & Larry Green
- Robert Laird
- Ken Hill
- Mark Dougherty
- Mark Fowler
- Gerry Putnam
- Igor Beades
- Brian Roberts

Previous Coordinators

- Dave Desautels
- Sheck Exley
- John Crea

Information Compilation

- Rebekah Halpern
- J. Ian Martin
- Elaine Jobin
- Michel Gadbois

Case History #6

- A diver exploring the Blue Hole in New Mexico fails to return from a dive
- Recovery divers ar unable to find the body
- Six years later, the body is recovered...

Case History #6

- A diver exploring the Blue Hole in New Mexico fails to return from a dive
- Recovery divers ar unable to find the body
- Six years later, the body is recovered...

In Lake Michigan!!

